Advertisements

“OSHA Quick Cards – Pocket Safety Cards For Tool Box Talks – Available In English & Spanish”

OSHA Quick Card

  • Aerial Lifts Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Avian Flu:
    General Precautions [English: PDF | HTML | Spanish: HTML]
    Poultry Workers [English: PDF | HTML | Spanish: HTML]
    Healthcare Workers [English: PDF | HTML | Spanish: HTML]
    Animal Handlers (Not Poultry Workers) [English: PDF | HTML | Spanish: HTML]
    Food Handlers [English: PDF | HTML | Spanish: PDF | HTML]
    Lab Workers [English: PDF | HTML | Spanish: HTML]
  • Carbon Monoxide Poisoning Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Chain Saw Safety Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Chipper Machine Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Construction Hazards (Top Four) Quick Card [English: PDF | HTML | Spanish: HTML]
  • Construction PPE Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Crane Safety Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Demolition Safety Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Electrical Safety Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Fall Protection Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Fireworks Safety Pocket Card (Retail Fireworks Sales) [English: PDF | HTML]
  • Fireworks Safety Pocket Card (Display Operators) [English: PDF | HTML]
  • General Decontamination Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Hand Hygiene Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Heat Stress Quick Card [English: PDF | HTML]
  • Hydrogen Sulfide Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Lead in Construction Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Mold Quick Card [English: PDF | HTML | Spanish: PDF | HTML | Vietnamese: PDF]
  • Motor Vehicles Safe Driving Practices for Employees [English: PDF | HTML Spanish: HTML]
  • Permit Required Confined Spaces Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Pest Control Pyrotechnics Quick Card [English: PDF | HTML]
  • Portable Generator Safety Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Portable Ladder Safety Quick Card [English: PDF | HTML]
  • Rescuers of Animals [English & Spanish PDF]
  • Respirators Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Rodents, Snakes & Insects Quick Card [English: PDF | HTML | Spanish: PDF | HTML | Vietnamese: PDF]
  • Tree Trimming & Removal Quick Card [English: PDF | HTML | Spanish: PDF | HTML | Vietnamese: PDF]
  • West Nile Virus Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Working Safely in Trenches Safety Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
  • Work Zone Traffic Safety Quick Card [English: PDF | HTML | Spanish: PDF | HTML]
Advertisements

“Confined Spaces – “What To Do Before You Enter” #ConfinedSpace #StayAlive

80% of fatalities happened in locations that had been previously entered by the same person who later died.

Each year, an average of 92 fatalities occurs from confined spaces locations due to asphyxiation, acute or chronic poisoning, or impairment.

But, what is a “confined space?”

A confined space is a space that:

  1. Is large enough and so arranged that an employee can bodily enter it;
  2. Has limited or restricted means for entry and exit;
  3. Is not designed for continuous employee occupancy.

Examples of confined spaces include:

  • Sewers
  • Storm drains
  • Water mains
  • Pits
  • And many more

Permit-required confined spaces include:

  • Contains or has the potential to contain a hazardous atmosphere
  • Contains a material with the potential to engulf someone who enters the space
  • Has an internal configuration that might cause an entrant to be trapped or asphyxiated
  • Contains any other recognized serious safety or health hazards

Here are some steps you can take to help ensure the safety of your workers.

1. Is This a Confined Space?

2. Is the Atmosphere Safe?

Testing must be done in several levels of the space because specific hazardous gases react differently to the rest of the atmosphere. Why? Hydrogen Sulfide is slightly heavier than air, while other dangerous gases such as methane may be lighter than air and rise to the top. Only by testing all levels of the tank you are about to enter can you be reasonably sure the atmosphere is acceptable for breathing.

3. How Do I Exit Safely?

Before you start thinking about entering, first make sure you can get back out. Meaning you have a rescue plan and are working with someone else who can provide for rescue.

If you don’t have a rescue plan, don’t enter.

4. How Do I Enter Safely?

Does the job or project require special equipment to get in and out of the space, such as a body harness?

5. Will The Atmosphere Stay Safe?

Once you’ve established that the atmosphere is safe to enter, you next have to know that it will stay that way. Which leads us to our next point.

6. Does the Space Need Ventilating?

If the air is found to be unsafe within the confined space because of existing fumes or gas, or if the work being done will contribute to a degradation of the breathable atmosphere, the space needs to be ventilated and you need to be using an air monitoring device.

7. Equipment Check

It’s important to check your equipment before beginning any sort of confined space entry work. Has your gas detector been bump-tested or recently calibrated? Have all lanyards and lifelines been checked for wear? Have harnesses been properly stored?

8. Lighting

Confined spaces are often cramped, dark and awkwardly shaped. A well-lit worksite helps workers avoid injury.

9. Communication

Radios are a great way to stay connected with workers, but also keep in mind that, nothing can replace having a standby worker positioned at the exit when workers are in a confined space. This tried and true system allows the outside person not only to communicate with workers within the space but also to call for help if it is needed.

10. Are you and your crew up to the task?

Can each team member be relied upon in a life-threatening situation?

This list is not meant to be comprehensive, check the OSHA Standards for that.

Stop to consider the dangers before you enter, and be mindful that confined spaces can become dangerous after you have entered.

Source: Vivid Learning Systems – Safety Toolbox

“Preventing Work Related Hearing Loss”

Worker training video providing Safety Managers & EHS professionals a valuable tool about Hearing Conservation. Concepts include dB levels, noise affects on your inner ear, health effects of hearing damage, noise measurement, audiometric testing and hearing protection.

work-related-hearing-loss

“ANSI Emergency Eyewash, Shower Standard Revised – Are You In Compliance?”

By Roy Maurer  12/7/2015

The national consensus standard for the selection, installation and maintenance of emergency eye, face and shower equipment was recently updated.

The International Safety Equipment Association (ISEA) received American National Standards Institute (ANSI) approval for ANSI/ISEA Z358.1-2014, American National Standard for Emergency Eyewash and Shower Equipment, and the update went into effect January 2015.

There is no grandfather clause, and existing equipment must be compliant with the revised standard.

“This globally accepted standard continues to be the authoritative document that specifies minimum performance criteria for flow rates, temperature and drenching patterns,” said Imants Stiebris, chairman of the ISEA Emergency Eyewash and Shower Group and safety products business leader at Speakman Co.

The Occupational Safety and Health Administration (OSHA) has a general requirement specifying where and when emergency eyewash and shower equipment must be available, but it does not specify operating or installation requirements.

That’s where the ANSI/ISEA standard comes in. While it doesn’t have the full force of an OSHA regulation, the standard helps employers meet OSHA requirements.

“Safety showers and eyewashes are your first line of defense should there be an accident,” said Casey Hayes, director of operations for Haws Integrated, a firm that designs, builds and manages custom-engineered industrial water safety systems. “We’ve seen OSHA stepping up enforcement of the standard in the last couple of years and issuing more citations,” he said.

What Is ANSI/ISEA Z358.1-2014?

The standard covers plumbed and self-contained emergency showers and emergency eyewash equipment, eye/face wash equipment, combination units, personal wash units and hand-held drench hoses. These systems are typically found in manufacturing facilities, construction sites, laboratories, medical offices and other workplaces.

The standard specifies minimum performance criteria for flow rates, temperature and drenching patterns for a user to adequately rinse off a contaminant in an emergency situation. It also provides maintenance directives to ensure that the equipment is in proper working condition.

One of the most significant requirements of the standard deals with the location of the equipment, Hayes said, and “It’s probably the most difficult part for employers to comply with.” The equipment must be accessible to workers within 10 seconds—a vague requirement, according to Hayes—but the standard’s appendix references 55 feet, he pointed out.

The wash or shower must be located on the same level as the hazard. “You can’t have somebody working on a stairwell and have to go up or down a flight to get to the shower. The equipment needs to be installed on the same level where the accident could happen,” he said.

The wash station must also be free of obstructions. “Someone needing to get to the shower or eyewash could be in a panic—their eyes could be blinded by chemicals—so employers must ensure that the shower is accessible and free of obstructions,” he said.

All equipment must be identified with highly visible signage, must be well-lit, and needs to be able to go from “off” to “on” in one second or less.

“The volume of water that is required for a 15-minute flow is not always considered,” Hayes said. The standard requires the victim to endure a flushing flow for a minimum of 15 minutes. With water pressure from the drench shower 10 times the amount of a typical residential shower, “that is a significant amount of water, and you need to deal with it on the floor and from a capacity standpoint,” he said.

The comfort of the person using the wash also needs to be considered. “It is not a pleasant experience to put your eyes in the path of water. The controlled flow of flushing fluid must be at a velocity low enough to be noninjurious to the user,” Hayes said.

The standard stipulates minimum flow rates of:

  • 0.4 gallons per minute for eyewashes.
  • 3 gallons per minute for eye/face washes. A good eye/face wash will have separate dedicated flows of water for your eyes and face, Hayes said.
  • 20 gallons per minute for showers. That’s 300 gallons of water required for the 15-minute wash.

Washes must deliver tepid water defined as between 60 degrees and 100 degrees Fahrenheit.

Studies have shown that tepid water increases the chances that a victim can tolerate the required 15-minute wash. Tepid water also encourages the removal of contaminated clothing, which acts as a barrier to the flushing fluid.

“We’re also seeing employers putting showers in enclosed areas or in curtained areas, to promote the removal of clothing and alleviate workers’ privacy concerns,” Hayes said.

2014 Revisions to the Standard

There weren’t that many changes to the 2009 standard, but a few highlights include the following:

  • A requirement was included that emergency showers be designed, manufactured and installed in such a way that, once activated, they can be operated without the use of hands.
  • The way the height of eyewashes and eye/face washes are measured changed from the floor to the wash basin to from the floor to the water flow. The height should still be between 33 inches and 53 inches. “Something to consider when inspecting washes is to ensure that, even though your wash fits within these limits, it’s still realistically usable,” Hayes said.
  • A single step up into an enclosure where the wash is accessed is not considered an obstruction. This had not been addressed previously.

The 2014 version further clarifies that fluid flow location and pattern delivery for emergency eyewashes and eye/face washes is the critical aspect in designing and installing these devices, rather than the positioning of nozzles. Additionally, illustrations have been updated to reflect contemporary design configurations.

Best Practices

Hayes recommended a few best practices that go above and beyond the standard and that he has seen used at companies with strong safety cultures:

  • Locate washes and showers in areas with adequate space for emergency responders to fulfill their duties. “If the equipment is in a tight space, you’re preventing responders from helping victims,” he said. Enclosures can be built to allow multiple people to be inside.
  • Monitor and evaluate all accessible components of washes and showers on a frequent and routine basis to manage potential problems.
  • Use eye/face washes in lieu of simply eyewashes. “It’s highly unlikely that a chemical splash will only land on your eye surface. This is common sense, so put in the right equipment,” he said.
  • Check that the washes meet the proper gauge height. The standard’s weekly activation requirement is mainly to ensure that water is available and to clear sediment buildup. “While a quick activation might seem sufficient, it’s not an accurate representation of functionality for the required 15-minute flush,” Hayes said. “If water is there but doesn’t rise up to the proper gauge height, you are compliant, but that equipment may fail you in the event that it’s needed.”

The ISEA’s new Emergency Eyewash and Shower Equipment Selection, Installation and Use Guide is a document that provides assistance on the proper selection, use and maintenance of equipment. The 22-page guide includes a frequently asked questions section and an annual inspection checklist.

The guide is available for download in PDF format.

Roy Maurer is an online editor/manager for SHRM.

Follow him @SHRMRoy

– See more at: http://www.shrm.org/hrdisciplines/safetysecurity/articles/pages/emergency-eyewash-standard-revised.aspx#sthash.LEfV88ib.dpuf

“What Should You Do When OSHA Shows Up At Your Door” #OSHA #Inspection

osha-jacket-850x476

1/27/2017 by Krista Sterken  | Foley & Lardner LLP

You arrive at work bright and early, only to find that someone beat you there — OSHA is waiting to perform an inspection. Now what? Many employers think they have little say in what happens next. Actually, employers have many choices to make, starting as soon as OSHA arrives.

The first thing step is simply bringing the compliance officer to a conference room or other appropriate location. You should select a location that is private and located close to the entrance, so you do not have to walk the compliance officer through any more of your facility than necessary. If the compliance officer happens to see something that may be a violation, this could provide the basis for a citation and/or expansion of the inspection.

Next, it is time to collect some information — you need to understand why OSHA is there. There are three main types of inspections: complaint inspections (conducted in response to a safety complaint), report inspections (conducted in response to a report of an employee death, injury, or illness), and program inspections (conducted under one of OSHA’s emphasis programs, which focus on particular industries or hazards). In some cases, a previous citation might provide the basis for a follow-up inspection.

You also need to know what OSHA intends to do. The inspection should be tailored to the reason for the visit. For example, a complaint inspection should be limited to areas related to the complaint. Program inspections are dictated by the focus of the program — you can obtain more information from OSHA’s website. All inspections should follow OSHA’s Field Operations Manual.

Finally, you must decide whether to agree to OSHA’s inspection plan. If OSHA identified a legitimate basis for the inspection and an appropriate inspection plan, then you might decide to allow the inspection to begin. However, if you have concerns, you have the right to refuse entry and require OSHA to return with a warrant (unless there is an imminent danger, in which case OSHA must be permitted immediate entry). If you require a warrant, OSHA will have to persuade a judge that its intended inspection is appropriate.

Employers are often nervous about requiring a warrant. However, you have the right to do so. OSHA understands this, and is not permitted to retaliate against you in any way. Requiring a warrant can be an effective way to impose fair parameters for the inspection.

Once the inspection has started, you are only at the very beginning of the process. Because there will be countless other important decisions, involve counsel early (preferably, as soon as OSHA arrives). Every company should also give some advance thought to its “OSHA plan,” identifying specifically how a request for inspection will be handled long before a compliance officer shows up on the company’s doorstep.

“Is Predictive Analysis For Safety Just the Next Big Thing?”

Another thought provoking #safety post from my good friend Phil La Duke

Phil La Duke's Blog

By Phil La Duke

I’ve taken a fair amount of flack about being behind on the latest and greatest in Safety theory. I’m not worried about getting a little flack from pompous, over-blown, theoreticians who pat me on the head and patronize me for being the poor stupid author of an antiquated article filled with atavistic thinking. That’s fine, but keep it respectful or I will poor more vitriol and bile then you thought possible.

For starters I have been a proponent, advocate, and user of predictive indicators since the late 1990s. But I have to tell you that I think the theoreticians are jumping the gun in saying that we can predict fatalities, or even injuries, at least not without significant education in statistics and data analysis.

Predicting fatalities is a bit like predicting the weather; that is, difficult. The difficulty lies in the many variables that can influence…

View original post 652 more words

“Fall Protection – What’s Required Where?” – “Scissor Lifts”

scissor-lifts-and-harnesses-fall-protection-or-no-protection

First, I want to start off with the “scissor lift” dilemma and confusion. If you talk to two different people, you’ll get two differing opinions. Here are my thoughts on this:

I have watched while the battle has raged over whether the use of personal fall arrest harnesses by scissor lift operators is appropriate. The rationale on each side of the issue; pro and con, is intelligent, compelling, and complete with opinions from well informed, knowledgeable people.

The core argument from the pro-harness side stems from the assertion that scissor lift operators are more or less subject to the same falling hazards as anyone else working at height, so why not wear a harness?

On the con-harness side of things, some of the many the arguments follow the logic that if a scissor lift operator who is tethered to the unit goes over the guardrail, the resulting force(s) exerted on the machine when his/her weight jerks to a stop at the end of the lanyard’s travel could be enough to cause the unit to topple, sending it and the operator down. In addition, so I’m told, as the unit plummets down with the operator in tow, the lanyard serves to worsen things by “slingshotting” the operator into the ground and possibly under the machine, resulting in even greater injury than if he/she were able to free fall or jump clear.

If that’s not enough, neither OSHA regulations or ANSI/SIA standards require the use of personal fall protection harnesses for operators of scissor lifts. In fact, in many cases manufacturers do not provide an anchor point to connect the snap hook of a lanyard to and, OSHA prohibits tying off to a guard rail as per 29CFR 1926.502(d)(23)); “Personal fall arrest systems shall not be attached to guardrail systems.”

Some other issues that I have heard from the con side have to do with things like how wearing a harness restricts the movement of the operator or that wearing a harness may actually lull the operator into a false sense of security. I could go on, but I won’t.

I am going to go on record here and state that I believe scissor lift operators should be required to wear a personal fall restraint system (PFRS) consisting of a full body harness and non-shock absorbing lanyard provided there is an approved anchor point to connect it to. (In fact, if you dig into the OSHA regulations, you’ll find that “If the scissor lift manufacturer provides tie off anchor points at the base of the guardrail system, and the manufacturer’s user instructions require them to be used, then you need to be tied off with a PFRS”.)

Allow me approach each point of the “con” argument and, for what it’s worth, chip in my two cents.

First of all, take note of the suggestion for using a fall restraint harness rather than a fall arrest harness. Fall arrest systems are designed to stop a fall in progress while fall restraint systems prevent a fall from occurring… big difference. No fall means no excessive force on the unit, therefore no tip-over. The operator stays on the platform and the lift stays upright. Granted, a fall restraint harness may restrict the operator’s motion depending on the type of anchor point and how much mobility is actually required, but this is a fair trade in exchange for preventing a fall and possible fatality.

As for the “slingshot” effect, well, the laws of physics do not support that theory. A few centuries ago, Galileo discovered something we know today as, the law of falling bodies. Without going into great detail here, it basically states that everything that falls accelerates toward the earth at a rate of 32 feet per second/per second, until reaching peak terminal velocity (top speed), which is about 120 mph. So, if a scissor lift tips over, the operator and the platform are going to travel toward the ground at approximately the same speed; there will be no “slingshot” effect and certainly no need to jump from the platform. In addition, an operator wearing a PFRS will not sustain further injury because of multiple impacts with the ground from bouncing after the initial impact with the ground.

On the topic of jumping clear of the unit, there are serious concerns about the practicality of that notion. Even a conditioned athlete that is prepared and ready for the unit to tip would have difficulty picking the right moment to leap clear. When an aerial lift goes over it typically happens unexpectedly and quickly. The average operator is unlikely to have the physical prowess or presence of mind to do the right thing at the right time and even if he/she did, they would still have the actual fall to the ground with which to contend.

That brings us to OSHA regulations which, after all, are the law and the law says you don’t have to wear a harness to operate a scissor lift. I am going to avoid getting wrapped up in reg’s here the same way I do when I train operators, suffice to say that we are not attempting to determine if we have to wear it, but whether we should. Allow me to share a bit of wisdom that I usually impart to operators when they get a bit carried away with the law, which is; when you operate aerial lift devices, the only law you need to concern yourself with is the law of gravity. Respect for occupational safety and health laws will affect your relationship with OSHA while respect for gravity will affect your relationship with the ground!

As far as harnesses giving operators a false sense of security, it shouldn’t. It should give them a real sense of security. It is a simple fact that an operator wearing a PFRS is less likely to be killed by falling from the platform, which in itself is reassuring. It is also a fact that more scissor lift operators are killed by falling from the platform than by tipping the unit over and besides, if the unit goes over for any reason, the effect on the operator will be ugly with or without a PFRS.

The bottom line here is that every situation, or in this case, each use of the scissor lift has to be looked at from a different approach, so good judgment and the use of best practices are imperative.

9-23-2016 – Here is a link to a Scissor Lift Manufacturers letter, requiring the use of Fall Protection while using their product. https://goo.gl/hi2mvw

“Why Lock-Out, Tag-Out IS Vitally Important” #LOTO #Safety

Caution: Somewhat Graphic Photo – Note: This Photo is the property of Jack Benton, and may not be used without written consent!

Why LOTO is Vitally Important 3

Why LOTO is Vitally Important 

Note: The photo above is not intended for page views or shock value as I don’t believe that those methods truly teach you anything in and of themselves. I don’t know the particulars of the above accident, but I do know that the lack of a proper lock out – tag out (control of hazardous energy) policy and procedure contributed to the accident.

This is always on OSHA’s Top 10 Violations list on a yearly basis, typically coming in at number 2 each year in the total number of times cited. Please use the training information below to keep your employees safe and involved in this process at your workplace.

Remember to AUDIT your procedures more than once per year. LOTO can be a difficult procedure especially when your job or facility has large manufacturing equipment such as a multi-employee operated mile long paper mill versus many single employee operated machines.

Hopefully, the Temp Worker Without LOTO Training who lost his life on the first day of his new job and the LOTO Webinar below, as well as the other resources further down the page will help you to put together an appropriate LOTO policy and procedure for your company.

Ninety minutes into his first day on the first job of his life, Day Davis was called over to help at Palletizer No. 4 at the Bacardi bottling plant in Jacksonville, Fla. What happened next is an all-too-common story for temp workers working in blue-collar industries. Read the investigation: http://www.propublica.org/article/tem..

The Control of Hazardous Energy (Lockout/Tagout) Full Webinar 2016

What is hazardous energy?

Energy sources including electrical, mechanical, hydraulic, pneumatic, chemical, thermal, or other sources in machines and equipment can be hazardous to workers. During the servicing and maintenance of machines and equipment, the unexpected startup or release of stored energy can result in serious injury or death to workers.

What are the harmful effects of hazardous energy?

Workers servicing or maintaining machines or equipment may be seriously injured or killed if hazardous energy is not properly controlled. Injuries resulting from the failure to control hazardous energy during maintenance activities can be serious or fatal! Injuries may include electrocution, burns, crushing, cutting, lacerating, amputating, or fracturing body parts, and others.

  • A steam valve is automatically turned on burning workers who are repairing a downstream connection in the piping.
  • A jammed conveyor system suddenly releases, crushing a worker who is trying to clear the jam.
  • Internal wiring on a piece of factory equipment electrically shorts, shocking worker who is repairing the equipment.

Craft workers, electricians, machine operators, and laborers are among the 3 million workers who service equipment routinely and face the greatest risk of injury. Workers injured on the job from exposure to hazardous energy lose an average of 24 workdays for recuperation.

What can be done to control hazardous energy?

Failure to control hazardous energy accounts for nearly 10 percent of the serious accidents in many industries. Proper lockout/tagout (LOTO) practices and procedures safeguard workers from hazardous energy releases. OSHA’s Lockout/Tagout Fact Sheet* describes the practices and procedures necessary to disable machinery or equipment to prevent hazardous energy release. The OSHA standard for The Control of Hazardous Energy (Lockout/Tagout) (29 CFR 1910.147) for general industry outlines measures for controlling different types of hazardous energy. The LOTO standard establishes the employer’s responsibility to protect workers from hazardous energy. Employers are also required to train each worker to ensure that they know, understand, and are able to follow the applicable provisions of the hazardous energy control procedures:

  • Proper lockout/tagout (LOTO) practices and procedures safeguard workers from the release of hazardous energy. The OSHA standard for The Control of Hazardous Energy (Lockout/Tagout) (29 CFR 1910.147) for general industry, outlines specific action and procedures for addressing and controlling hazardous energy during servicing and maintenance of machines and equipment. Employers are also required to train each worker to ensure that they know, understand, and are able to follow the applicable provisions of the hazardous energy control procedures. Workers must be trained in the purpose and function of the energy control program and have the knowledge and skills required for the safe application, usage and removal of the energy control devices.
  • All employees who work in an area where energy control procedure(s) are utilized need to be instructed in the purpose and use of the energy control procedure(s), especially prohibition against attempting to restart or reenergize machines or other equipment that are locked or tagged out.
  • All employees who are authorized to lockout machines or equipment and perform the service and maintenance operations need to be trained in recognition of applicable hazardous energy sources in the workplace, the type and magnitude of energy found in the workplace, and the means and methods of isolating and/or controlling the energy.
  • Specific procedures and limitations relating to tagout systems where they are allowed.
  • Retraining of all employees to maintain proficiency or introduce new or changed control methods.

OSHA’s Lockout/Tagout Fact Sheet* describes the practices and procedures necessary to disable machinery or equipment to prevent the release of hazardous energy.

The control of hazardous energy is also addressed in a number of other OSHA standards, including Marine Terminals (1917 Subpart C), Safety and Health Regulations for Longshoring (1918 Subpart G), Safety and Health Regulations for Construction; Electrical (1926 Subpart K), Concrete and Masonry Construction (1926 Subpart Q), Electric Power Transmission and Distribution (1926 Subpart V), and General Industry; Electrical (1910 Subpart S), Special Industries (1910 Subpart R), and Electric Power Generation, Transmission and Distribution (1910.269).

Highlights
  • Lockout-Tagout Interactive Training Program. OSHA eTool. Interactive tool to provide the user with an in-depth understanding of the LOTO standard, with three components: Tutorial, Hot Topics, and Case Studies.
  • Construction. OSHA eTool. Helps workers identify and control the hazards, including electrical hazards, that commonly cause the most serious construction injuries.
    • Electrical Incidents. Landing page for Electrical Incidents subpage of the Construction eTool, which identifies electrical hazards and recommends preventive measures.
  • Electric Power Generation, Transmission, and Distribution. OSHA eTool, (January, 2010). Assists workers in identifying and controlling workplace hazards.
Lockout/Tagout Concepts
Lockout/Tagout Program

Example elements of a lockout/tagout (LOTO) program are described in the OSHA standard for the control of hazardous energy (29 CFR 1910.147), along with these additional references.

Other Resources
Training
  • Lockout-Tagout Interactive Training Program. OSHA eTool. Interactive tool to provide the user with an in-depth understanding of the LOTO standard, with three components: Tutorial, Hot Topics, and Case Studies.
    • Case Studies. Presents a series of case studies for review, followed by related questions. Each of the case studies is based on descriptions of LOTO inspections derived from compliance interpretations, court decisions, Review Commission decisions, and inspection files.
  • Small Business Handbook (PDF). OSHA Publication 2209, (2005). Handbook is provided to owners, proprietors and managers of small businesses to assure the safety and health of workers.
  • Lockout/Tagout. National Ag Safety Database (NASD) Research Publications-11. Brief publication providing an overview of lockout/tagout, California laws and regulations, and training materials.
Additional Information
  • Fatality and Catastrophe Investigation Summaries. OSHA. Enables the user to search the text of Accident Investigation Summaries (OSHA-170 form) for words that may be contained in the text of the abstract or accident description.
  • Z244 Committee Information. American Society of Safety Engineers (ASSE).
  • Safety Alert: Control of Hazardous Energy – Lockout/Tagout (LO/TO) Procedures in Shipyard Employment*. OSHA and Shipbuilders Council of America, National Shipbuilding Research Program, and American Shipbuilding Association Alliances (now the Shipbuilding Group Alliance) and the American Industrial Hygiene Association and American Society of Safety Engineers Alliances, (February 2009). Safety Alert Fact Sheet that provides information on how to protect employees from hazardous energy. Also available in Spanish*.
  • Safety Alert: Electrocution and Shock Hazards in Shipyard Employment*. OSHA and Shipbuilders Council of America, National Shipbuilding Research Program, and American Shipbuilding Association Alliances (now the Shipbuilding Group Alliance) and the American Industrial Hygiene Association and American Society of Safety Engineers Alliances, (February 2008). Safety Alert Fact Sheet that provides information on how to protect employees from electrocution and shock hazards. Also available in Spanish*.
Related Safety and Health Topics

“The Body Counts Continue”

Another Great Article By My Friend Phil La Duke!

Phil La Duke's Blog

By Phil La Duke

As the safety professionals nestled in the serene bosom of the holidays, the Bureau of Labor Statistics dropped a shattering revelation. The news came like a hammer through a plate glass window; sudden and jarring. Workplace fatalities have risen to their highest rate since 2008. The fact that overall injuries have continued to fall year after year has lulled safety professionals into thinking that the workplace over all has become safer; we sit and congratulate ourselves on a job well done, ignoring the fatal fly in the ointment that the trend in workplace fatalities has stayed flat and now has spiked upward.

In this Twittering Trump, Brexit, post-fact world that fact that people are continuing to die at work doesn’t seem to matter; we congratulate ourselves none-the-less. Our leaders both within Safety and in our core businesses continue to count bandages. Despite injury counts and rates…

View original post 519 more words

“Top 10 OSHA Citations of 2016: A Starting Point for Workplace Safety”

OSHAupdate

Every October, the Department of Labor’s Occupational Safety and Health Administration releases a preliminary list of the 10 most frequently cited safety and health violations for the 2016 fiscal year, compiled from nearly 32,000 inspections of workplaces by federal OSHA staff.

One remarkable thing about the list is that it rarely changes. Year after year, our inspectors see thousands of the same on-the-job hazards, any one of which could result in a fatality or severe injury.

More than 4,500 workers are killed on the job every year, and approximately 3 million are injured, despite the fact that by law, employers are responsible for providing safe and healthful workplaces for their workers. If all employers simply corrected the top 10 hazards, we are confident the number of deaths, amputations and hospitalizations would drastically decline.

Consider this 2016 list a starting point for workplace safety:

  1. Fall protection
  2. Hazard communication
  3. Scaffolds
  4. Respiratory protection
  5. Lockout/tagout
  6. Powered industrial trucks
  7. Ladders
  8. Machine guarding
  9. Electrical wiring
  10. Electrical, general requirements

It’s no coincidence that falls are among the leading causes of worker deaths, particularly in construction, and our top 10 list features lack of fall protection as well as ladder and scaffold safety issues. We know how to protect workers from falls, and have an ongoing campaign to inform employers and workers about these measures. Employers must take these issues seriously.

We also see far too many workers killed or gruesomely injured when machinery starts up suddenly while being repaired, or hands and fingers are exposed to moving parts. Lockout/tagout and machine guarding violations are often the culprit here. Proper lockout/tagout procedures ensure that machines are powered off and can’t be turned on while someone is working on them. And installing guards to keep hands, feet and other appendages away from moving machinery prevents amputations and worse.

Respiratory protection is essential for preventing long term and sometimes fatal health problems associated with breathing in asbestos, silica or a host of other toxic substances. But we can see from our list of violations that not nearly enough employers are providing this needed protection and training.

The high number of fatalities associated with forklifts, and high number of violations for powered industrial trucksafety, tell us that many workers are not being properly trained to safely drive these kinds of potentially hazardous equipment.

Rounding out the top 10 list are violations related to electrical safety, an area where the dangers are well-known.

Our list of top violations is far from comprehensive. OSHA regulations cover a wide range of hazards, all of which imperil worker health and safety. And we urge employers to go beyond the minimal requirements to create a culture of safety at work, which has been shown to reduce costs, raise productivity and improve morale. To help them, we have released new recommendations for creating a safety and health program at their workplaces.

We have many additional resources, including a wealth of information on our website and our free and confidential On-site Consultation Program. But tackling the most common hazards is a good place to start saving workers’ lives and limbs.

Thomas Galassi is the director of enforcement programs for OSHA.

%d bloggers like this: